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J. Phys. A: Math. Gen. 13 (1980) 1537-1542. Printed in Great Britain 

Gauging Lie superalgebras 

C D Pickup and J G Taylor 
Department of Mathematics, King’s College, University of London, Strand, London WC2R 
2LS, UK 

Received 2 July 1979 

Abstract. We present arguments for the detailed form of Lagrangian to be selected in 
gauging &graded Lie superalgebras, with particular reference to SU(n1m). On physical 
grounds the use of the graded trace is unacceptable. The ordinary trace is not invariant 
under the whole superalgebra, though we find that a condition of ‘first-order’ gauge 
invariance can be satisfied. Certain restrictions on the gauge potentials then result, which 
we enumerate most specifically for su(2/1) .  

A Lie superalgebra (&-graded Lie algebra) (Kac 1977, Scheunert et a1 1977 and 
references therein) is a generalisation of a Lie algebra in which some of the generators 
obey anticommutation relations: 

CQ,, Qbl -  = &Qc CQa, & I -  = tLRp [R,, Rp I+ = tkpQc.  

In a more compact notation let {T,} = I Q a ,  Ra}, and define the degree deg ( T )  of a 
generator by deg (a,) = 0, deg (R,) = 1. Then the generalised commutation relations 
can be written 

a (1) degi T,)deg( Tb)  rb T 
[ T O ,  T b I =  T,Tb - ( - I )  

or more simply [T,, Tb] = T,Tb -(-l)abTbT, (Kac 1977), where a = deg (Ta) .  From 
this definition it is easy to show that 

[Ta, [Tb, T C I ] ( - ~ ) ” ~ + [ T ~ ,  [Tc, T U ] I ( - ~ ) ~ “ + [ T C ~  [To, Tbll(-l)cb = o  ( 2 )  

which is the generalised Jacobi identity. 
Relations ( 1 )  and (2) define a Lie superalgebra, A. A is the direct sum of two parts, 

A = A o + A l ,  where A. contains the even elements, Q,, and A I  contains the odd 
elements R,. We can decompose a general a E A as a = ao+ al where a, E A,. An 
endomorphism, D, of the algebra is called a derivation of degree d if 

D ( a b )  = D ( a ) b  +(- l )”duD(b)  where a, b, E A .  

For example, in a gauge transformation on a (non-graded) Lie algebra, D might be a 
gauge transformation D ( a )  = [U, a]-  where D, a E In a matrix representation the 
even elements consist of matrices of block diagonal form 
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1538 C D Pickup and J G Taylor 

where a,  d are square matrices, whilst the odd elements are 

We define the graded trace by 

tig(: fi) = tr a - tr d. (3) 

We now consider the problem of gauging a Lie superalgebra. In the mathematical 
literature it is customary to regard gauge transformations as derivations and for 
invariant forms to be defined in terms of the graded trace. An approach has been 
suggested (Taylor 1979a) taking the gauge transformation in the non-graded sense. 
However, this requires stronger restrictions on the gauge potentials, along the lines 
discussed below, than that resulting from the use of graded gauge transformations. 
Since the latter gives covariantly transforming field strengths, and hence a simpler 
structure, we will pursue it here. We note however that there is a difference in the 
structure of the Higgs fields in the ungraded as compared to the graded case: in 
six-dimensional space-time there is only the single traditional massive Higgs particle in 
the former case as compared to five (two charged, three neutral) such in the latter case. 

Returning to the graded case we define 

F,, = a,A, - a A ,  + [A,, A,]  (4) 

where A,  takes values in the Lie superalgebra, 

A,  = A:T,. 

Under a gauge transformation 

SUA, = 8 , ~  - [ U ,  A,]  ( 5 )  

S,F,,=-a,[u, A Y l + a Y [ ~ ,  A,I+[a,u-[u, A,] ,  AvI+(- l )"A*[Ay,  a , u - [ ~ ,  A, ] ]  

=-[U, &I 
where we have used the Jacobi identity (2). The covariant derivative is defined 
analogously to that in Lie algebras, 

D,=a,+A, .  (6) 

Let $ be a set of fields transforming as 

Isu* = -U$. 

&(D,$) = (8,u -[U, A,])$ + (8, + (-l)uA"Ap)(-u$) 

Then 

= -U (Ow41 

i.e. D,$ transforms covariantly. 
Next we consider invariant forms. A well-known invariant bilinear form is tr, (AB) 

(Kac 1977). (We do not distinguish between an element of the superalgebra and its 
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representation.) This is invariant under SUA = [U, A] since 

6, tr,(AB) = tr,([u, A]B +(-l)”AA[u, B ] )  

= tr,( uAB - (- 1) u ( A + B )  ABu) 

Thus tr,(F,,Fp””) is an invariant quadratic form. If 

then tr,(F2) - tr(a2- c 2 ) .  
Specifically, when we look at the generalisations of SU(2) x U(l )  (Dondi and Jarvis 

1978, Fairlie 1979, Ne’eman 1979,Taylor 1979a), both a and c are either Hermitian or 
antiHermitian, and so tr(a2 - c 2 )  is physically unacceptable due to negative energies 
arising in tr(c2). tr,(FF+) would also have this problem. 

We thus reject tr,(F,,Fl*”) as a physically acceptable kinetic energy term and turn to 
the ordinary trace. In this we shall be much more specific and consider the Lie 
superalgebra SU(m1n) whose matrix representations are of the form 

according to Freund and Kaplansky (1976); a,  c are antiHermitian, so A i  = -Ao and 
AT = -iAl (Berezin (1977) is similar except A: = iAl).  Fairlie (1979) and Taylor 
(1979a) have a different definition: 

A=(i;+ :) a+ = a, c+  = c. (7) 

Thus A,’ = Ao, A: = -Al ,  so that the bracket has to be modified. If A, B E  SU(m1n) 
then 

i[A, B] E SU(m(n) 

where 

[A, BI=[Ao, BoI-+[Ao, B1I-+[A1, BoI-+i[Ai, B1I+. 

Consider first the Freund and Kaplansky representation: 

tr(F2) - tr(a2 + c 2  + 2ib+b). 

a’, c 2  and b’b are real and so this Lagrangian is not real and thus it is unacceptable. We 
need not examine its invariance. To overcome this problem we could try tr(FF+) which 
is real but positive definite. Thus if we hope to include the Higgs fields in this model and 
have spontaneous symmetry breaking we cannot use tr(FF+) as a Lagrangian. This 
objection also rules out tr(FF+) for representation (7) as well. (This case has been 
examined in Taylor (1979b).) 

Finally we come to tr(F,,Fp””) in representation (7). This is real, and not positive 
definite, and thus might contain some interesting physics. 
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First we must examine its invariance. To avoid confusion with signs we proceed as 
follows: 

8, tr(AB) = i tr([u, A)B  + ( - l ) "AA[u,  B ] )  

= i tr{(ulAoB1 - ulBIAo+ u lAIBo-  ulBoA,) 

+i(ulAIBo+ ulBoAl + ulBIAo+ u:AoBl)}. 

Now A = I3 = F, giving 

6, tr(FF) = i tr{(ulFoF, - ulFIFo+ ulFIFo- ulFoF1) 

+i(ulFIFo+ ulFoFl + ulFIFo+ ulFoF1)}  

= -2tr{ul(FoFl +FIFo)} .  (8) 

If [Fo, F1]+ = 0 then tr(F') is invariant. We extend the dimensionality of space-time 
from 4 to n. and denote a general index by capital Roman letters. g M N  = 
diag( t 1, -1, -1, -1, -1, . . . -1). Let p, v denote indices from 1 to 4 and m, n indices 
from 5 to n. (8) reads in full: 

[ F O M N ,  FYN1+ = 0 (9) 

where any fields are independent of the additional dimensions and the summation 
convention is being used. To regain conventional gauge theory in four dimensions we 
choose 

[ ~ o M . v ,  .FY~I+ 
and look now at the two middle terms: 

[~;b,~~ FYI+ + [~b,", K " I +  + [ F o m v ,  FYI+ + [~o,,, FYI+  

FPn = a,A, + i[A,, A,]- 

= - F,,. 

So we need only examine one of these terms: 

[F0,n7 F?"I+ = (~,Ao,, +$A,, A o , I - ) W A ~  +CA+', AT]-) 

 AI, +$A,, A1,3-)(a"A," + i[A@, A,"]-). 

This will satisfy (8) if (a) Ao, is a constant which commutes with A,, or (b) A,, is 
constant and commutes with A,. Examination of the generators reveals that (b) can 
only be satisfied if Al,  = 0. Condition (a) is satisfied by 

Ao, = hf,,,Agf (9b)  
where M ,  is a constant. We are left with the term 
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(10) can be written as 

Thus equations (9a)  and (9b) ensure the invariance of the Lagrangian tr(FMNFMN) 
under infinitesimal transformations of the superalgebra. 

We now turn to SU(211) in six space-time dimensions and choose 

where 4, + are 2 x 1 column vectors. Thus: 

m5*- m64) * 
4*++*4+ F 56-( - (m5*+-m64+)  -- +'*+*+4 

We can now examine the contribution of the Higgs fields to the Lagrangian: 

2~ = --atr(2F,SF'"5+2F,,5Ft"6+F55F55+F56F56+F65F65+F66F66) 

where the extra dimensions are space-like as before: 

Z H  = -IDpdI2- ID,$/'- 2!4+4b)2-2(9t*j1)2-~((*+4)2 (+'$)2+21$/21412) 

- ; ( + + W + ~ ) ~ + I W -  m6412. 
The sign of the kinetic energy term is incorrect. However, if we choose a metric which is 
time-like in the extra dimensions (Taylor 1979), then 

2 H =  I ~ , ~ 1 2 + I ~ p ~ / 2 - 2 / ~ L ~ ~ Z - 2 ( ~ t ~ ) 2 - ~ ( ( ~ + ~ ) 2 + ( ~ t ~ ) 2 + 2 / ~ 1 2 1 ~ / 2 )  

- $(4 'sl/ + $' 4 + 1 m5 - m64 I 
Analysis of the potential for the case m5 = mh shows that for there to be a minimum of 
the potential 

(*)o = - ( 4 ) o  
which reproduces Fairlie's condition (Fairlie 1979), though now only on (A& and 
(A6),,. Thus we achieve spontaneous symmetry breaking. Matter can be coupled to this 
system, as discussed in Fairlie (1979), Dondi and Jarvis (1979) and Taylor (1979b, 
1980). 

We conclude by remarking that an invariant gauging of the complete superalgebra 
has not been achieved, since (9) is not itself gauge-invariant; for example, the solutions 
(9a)  will acquire odd components in a different gauge. Having fixed the odd part ul of 
the gauge transformation U then there is indeed invariance under even gauge trans- 
formations. For SU(n1m) we thus have the remaining true gauge invariance under 
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SU(n) x SU(m). We can thus regard the invariance condition on the Lagrangian 2: 

au2? = 0 (10) 

as a means of specifying the odd element of 9, and thereby the potentials AM through 
condition (9). We can regard (10) as a condition of first-order gauge invariance: the 
Lagrangian is to be chosen to be invariant under infinitesimal gauge transformations 8, 
for U in the full superalgebra. The resulting classical theory is then to be quantised in 
the resulting non-trivial potentials. 

This situation is not completely satisfactory, but at worst we can regard it as a 
prescription for restricting the Higgs and fermion structure of the truly gauge-invariant 
S U ( n )  x SU(m) theory remaining after imposing (10). In particular, various restrictions 
are (Taylor 1980): (i) the Higgs multiplets can only occur as fundamental represen- 
tations of S U ( n ) ,  and at most one for each extra time-like dimension, (ii) all non-zero 
Higgs masses are equal (to 150 BeV in SU(211)), (iii) all lepton masses must be below 
54 BeV, (iv) each extra heavy lepton requires two extra time-like dimensions. Such 
results may well be tested in the next few years. In  the meantime it would appear of 
value to attempt to gauge the superalgebra properly; we hope to return to that 
elsewhere. 
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